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Abstract— Reinforcement learning (RL) controllers are flex-
ible and performant but rarely guarantee safety. Safety filters
impart hard safety guarantees to RL controllers while maintain-
ing flexibility. However, safety filters cause undesired behaviours
due to the separation of the controller and the safety filter,
degrading performance and robustness. This extended abstract
unifies two complementary approaches aimed at improving the
integration between the safety filter and the RL controller. The
first extends the objective horizon of a safety filter to minimize
corrections over a longer horizon [1]. The second incorporates
safety filters into the training of RL controllers, improving
sample efficiency and policy performance [2]. Together, these
methods improve the training and deployment of RL controllers
while guaranteeing safety.

I. INTRODUCTION

Reinforcement learning (RL) can adapt to complex reward
signals and unknown dynamics, which has led to superior
performance in various domains, including robotics [3], [4].
However, RL lacks safety guarantees [5]. Safety filters can
ensure that RL controllers operate safely while minimally
interfering. They determine whether uncertified (i.e., poten-
tially unsafe) controller inputs will violate the constraints [6],
[7]. If so, the filter determines the minimal deviation from the
input that results in constraint satisfaction. However, adding
a safety filter changes how the controller interacts with the
environment.

Contributions: This extended abstract combines insights
from two works that address these challenges. The first
work [1] introduces a generalization of the standard safety fil-
ter objective function, which minimizes the corrections over a
horizon. This extension enables safety filters to anticipate and
avoid unsafe actions more effectively, significantly reducing
chattering [1], [8] (see Fig. 1). The second work [2] modifies
the training process of the RL controller using safety filters.
The modifications significantly improve sample efficiency,
eliminate constraint violations during training, improve final
performance, and reduce chattering [2], [9] (see Fig. 2).
Both studies use model predictive safety filters (MPSFs) [10]
but can be extended to other filters. These studies further
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Fig. 1: Chattering caused by the standard one-step MPSF versus the multi-
step MPSF [1]. The multi-step filter reduces the peak-to-peak amplitude of
chattering from 16.3 cm to 3.6 cm.

Fig. 2: An RL controller trained without a safety filter (blue) tracks a
reference trajectory (black), but unforeseen interactions with the safety filter
cause poor tracking. When trained with a safety filter (green), the behaviour
is smoother and more performant [2]. The constraints are in red.

leverage safety filters to achieve safe and efficient RL in
robotics.

II. METHODS

A. Multi-Step Objective Function [1]

The standard (one-step) safety filter objective function is:

JSF,1 = ∥πuncert(xk)− u0|k∥2, (1)

where xk is the state at time step k, πuncert is the RL
policy, and u0|k is the input to be applied (the optimization
variable) [5]. By generalizing to multiple steps, the filter can
minimize corrections over a longer prediction horizon:

JSF,M =

M−1∑
j=0

w(j)∥πuncert(zj|k)− uj|k∥2, (2)

where w(·) : N0 → R+ calculates the weights associated
with the j-th correction, M is the filtering horizon, zj|k is
the estimated future state at the (k+j)-th time step computed
at time step k, and uj|k is the input at the (k + j)-th time
step computed at time step k. The inputs are the optimization
variables. This allows the agent to proactively correct actions
to avoid unsafe states.



TABLE I: Results for the simulation experiments of the training modifications that incorporate a safety filter [2].

Metric Std. PC SR PC,SR FA FA,PC FA,SR FA,PC,SR

Return 200.2 ± 17.1 210.0 ± 14.4 213.3 ± 15.8 210.9 ± 14.6 206.1 ± 12.9 208.6 ± 14.2 211.3 ± 15.3 214.1 ± 14.0
Input rate of change [ms−1] 16.4 ± 17.0 6.6 ± 17.1 23.4 ± 15.3 6.1 ± 7.6 9.5 ± 2.4 11.1 ± 10.3 10.9 ± 10.4 7.5 ± 3.3
Training constraint violations [%] 82.8 ± 6.6 71.6 ± 3.5 73.3 ± 2.5 67.4 ± 6.9 8.3 ± 0.1 8.4 ± 0.1 0.23 ± 0.02 0.22 ± 0.03
Training time per step [ms] 2.3 ± 0.3 9.8 ± 1.1 4.6 ± 1.7 12.4 ± 3.0 10.5 ± 0.6 9.9 ± 1.1 11.7 ± 1.4 11.6 ± 1.5

B. Training Modifications [2]

We consider three modifications to the training of RL
algorithms. These can be combined or used separately and
applied to any RL controller and safety filter.

1) Filtering Training Actions: During training, the con-
troller generates uncertified actions uuncert,k ∈ U. By ap-
plying the safety filter ucert,k = πSF(xk,uuncert,k), safety is
guaranteed during training [9].

2) Penalizing Corrections: We can penalize corrections
during training to encourage the RL to execute safe actions.
The magnitude of the correction measures how unsafe the
action was. Thus, we penalize the reward by α∥uuncert,k −
ucert,k∥22 [10], [11], where α > 0 is a tuneable weight.

3) Safely Resetting the Environment: Sample efficiency
can be improved by using the safety filter to avoid initiating
an episode in an unsafe state [12]. We will sample x0 ∼ S,
where S is the set of starting states, then determine the
feasibility of certifying an input from that state [12]. If
the safety filtering optimization is feasible, x0 is safe. If
infeasible, another starting state is randomly generated until
a feasible starting state is found.

III. EXPERIMENTAL RESULTS

To determine the efficacy of the multi-step objective
function and the training modifications, we ran experiments
in the safe learning-based control simulation environment
safe-control-gym [13] and on a real quadrotor, the
Crazyflie 2.0. The underlying MPC is the robust nonlinear
MPC in [14]. Proximal policy optimization (PPO) [15] was
used as the RL controller.

A. Deploying with the Multi-Step Objective

The one-step and multi-step (with M = 2, 5, 10) MPSFs
(based on the robust nonlinear MPC in [14]) were tested five
times each on real Crazyflie 2.0 quadrotors. The task con-
sisted of tracking a trajectory that went outside the position
constraints. The weight function was set to w(j) = 0.85j .

As seen in Fig. 3, our multi-step approach significantly
reduces the norm of the rate of change of the inputs, reducing
it by 80% compared to the one-step approach when M =
10. The maximum correction and magnitude of corrections
are either maintained or decreased compared to the one-step
approach, and both are decreased by over 30% when M =
10 [1]. This demonstrates that our multi-step approach is
more effective at decreasing chattering and jerkiness than
the standard one-step objective function while reducing the
overall magnitude of corrections.
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Fig. 3: The norm of the rate of change of the inputs (see [1]) for the real
Crazyflie trajectory tracking experiments testing the multi-step approach.
The multi-step approach significantly decreases the norm of the rate of
change of the inputs, up to an 80% decrease compared to the one-step
approach (in blue), without violating the constraints.

B. Training with Safety Filters

Every combination of the modifications was trained and
evaluated. “Std.” refers to the baseline with no training
modifications. The other approaches are combinations of
the training modifications: FA = Filtering Actions, PC =
Penalizing Corrections, SR = Safe Reset.

The controllers were evaluated on a simulation of a
Crazyflie 2.0 [16] using the safe-control-gym [13].
The trajectory tracking task consists of tracking a figure-eight
reference in three dimensions. The position is constrained to
be 5% smaller than the full extent of the trajectory.

From Table I, we note that penalizing the corrections
reduces the number of constraint violations during training,
lowers the rate of change of the inputs (see [1]), and
increases the return. The safe reset modification significantly
improves convergence and evaluation return. When partnered
with the safe reset approach, filtering the actions reduces
the constraint violations to nearly zero. Combining all the
modifications leads to the best return and convergence and
the least constraint violations during training [2].

IV. CONCLUSION

This work presents two complementary approaches to
improve the integration of safety filters in reinforcement
learning for robotics. The multi-step objective function ef-
fectively reduces chattering and jerkiness caused by safety
filters while minimally intervening. The training modifica-
tions improve the convergence and performance of the RL
agent while eliminating training-time constraint violations.
Together, these approaches address key challenges in safe
RL and safety filters, paving the way for broader adoption
of RL in safety-critical robotic systems.
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