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Abstract—We introduce subsystem safety filters (SBSFs), a
framework for safe shared control in coupled robotic systems. We
consider mutli- and single-agent robots that can be divided into
separately controllable subsystems, such as a drone swarm or a
mobile manipulator divided into a mobile base and a manipulator
arm. Our SBSF guarantees safety for the externally-controlled
subsystem while simultaneously controlling the other subsystem.
Our results on a drone swarm show that our subsystem filtering
significantly improves safety and performance over decentralized
alternatives.

I. INTRODUCTION

Robotic systems often consist of multiple tightly coupled
subsystems, such as the arm and base of a mobile manipulator.
In many applications, controlling only a subset of the system
is necessary to reduce complexity and enable teleoperation.
However, when the subsystems are coupled, the uncontrolled
subsystems must be simultaneously controlled to ensure safety.

We propose subsystem safety filtering (SBSF), a control
paradigm in which a finite-time optimal control optimization
problem ensures safety across the entire system, while mini-
mally correcting the control inputs applied to the externally-
controlled subsystem. For example, consider a mobile ma-
nipulator carrying objects on a tray while moving through a
cluttered environment. The base may be teleoperated to move
through the environment, safety filtered by the SBSF, while
the SBSF adjusts the arm to keep the tray it is carrying level.

II. RELATED WORK
A. Safety Filters

Safety filters guarantee the safety of a system controlled
by an arbitrary policy (e.g., an RL agent or teleoperator)
by minimally modifying the commands to enforce state and
input constraints. Control barrier function (CBF) safety fil-
ters enforce forward-invariance of safe sets [1], but these
can induce chattering near constraint boundaries [2]. Model
predictive safety filters (MPSFs) instead use model predictive
control (MPC) theory to guarantee safe backup trajectories to
a terminal set [3]. Recent work has proposed multi-step model
predictive safety filters, which optimize over a short horizon
to smooth interventions and reduce chattering [4].
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(a) Naive safety filtering approach (b) Proposed subsystem filter (SBSF)

Fig. 1: The naive safety filtering approach compared to our proposed approach,
with changes in red.

These safety filters assume the controller commands the
entire robotic system. As a result, they are not tailored to
scenarios in which only a subset of the robot’s actuators (or de-
grees of freedom) are directly commanded. This occurs when
control is shared between an internal safety mechanism and the
external controller. Our work extends model predictive safety
filters to this task, restricting external control to a portion of
the system while controlling the remaining subsystems, and
maintaining safety guarantees throughout.

B. Shared Control

Shared control arises in human-robot interaction (HRI)
when a human operator and an autonomous agent jointly
generate commands. Unlike the safety-oriented filter literature,
shared-control research often emphasizes task performance,
ergonomics, or intent inference over formal guarantees. Two
main paradigms have developed:

o Blended Control: The inputs from the human and the
autonomous agent are fused — for example, via weighted
averaging or by solving a receding-horizon MPC that
stays close to the human’s suggestion while respecting
dynamics and environment constraints [5]. However, the
blended commands may not satisfy the goals of either
the human or autonomous agents, and results in less
performant policies.

o Authority Switching: Frameworks such as EMICS [6]
or HierEMICS [7] dynamically allocate control authority
between a human and a robot based on the estimated
operator state or the environment. While they can im-
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prove usability and reduce conflict, they rely on heuristic
switching logic.

In contrast, our approach decouples the robot system into
two groups of subsystems — an externally controlled group
that is safety filtered and an internally controlled group —
while enforcing safety jointly via a unified optimization prob-
lem, the subsystem safety filter (SBSF).

III. PROBLEM SETUP

We consider a discrete, time-invariant system given by:
X1 = f(Xg, ug), (1

where x;; € X C R" represents the system state at time step
k,ux € U C R™ denotes the control input, and f encapsulates
the system dynamics. The system is subject to known state
and input constraints x € X, u € U,.

We decompose the system into two subsystems, which we
denote as an external subsystem and an internal subsystem.
Let us define projection functions:
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up = Ty (Vi v8), (3)

where zi, € R™ and Z5, € R™ are the internal and external
subsystem states respectively, Vik € R™ and vy € R™" are the
inputs to those subsystems, T, is a transformation function
which projects the full system state x;, to the two subsystems,
and T, transforms the subsystem inputs to the full system

input uy.
Constraints are imposed separately on each subsystem via
. €7, 25 €Z:, and VL€V, vicVe. (4

These constraints are equivalent to the full system constraints.
Thus, we can write the subsystem dynamics as:

Zhorr = T (£, To (v, VR))) 5)
Ziw1 = T (E(xk, To (v, VE)))- (6)
In this paper, we focus on subsystems which are coupled,

thus each subsystem’s dynamics depend on the state and/or
input from the other subsystem.
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A simplification of the projections above is to consider
linearly separable subsystems:
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X, =7 x7¢, U,=V.xVe. (10)

This simplification is sufficient for most cases, such as a
mobile manipulator where the mobile base and the manipulator
arm are the two subsystems.

Our goal is to design a subsystem safety filter that:

1) Accepts the command for the external subsystem V7.

2) Computes (Vi,v$), ensuring safety.

3) Minimizes ||V, — V|| in an appropriate norm.

4) Commands the internal subsystem to complete a task,
such as stabilization or trajectory tracking.

IV. SUBSYSTEM MODEL PREDICTIVE SHARED CONTROL

Let us consider a standard MPC optimization:

rlrlllin Jvec (X, 0k, Q.. R.) (11a)
k

s.t. constraints satisfied, (11b)

where u;;, are the inputs at the (k4 j)-th time step computed
at time step k, X and u;);, are the desired states and inputs
at the (k + j)-th time step, and Jypc (X, 0.5, Q. ,R.) =
SO0 IR = gpa 3, + 1 — e, - where Q; € R
and R; € R™*™ are the weight matrices for the states and
inputs, and H € Z- is the MPC horizon.

MPSFs are standard MPCs with no state tracking (Qj =
0,, Vj > 0), and with the desired input trajectory u.; set to
the future commands of the external controller. We denote the
MPSF objective as Jypse(l. |, R.) = Zf:_ol [0 — uj|k\|%j.
In the standard one-step MPSF [3] Rp = 1,, and R; =
0,, Vj > 0. In multi-step MPSFs, the future inputs of the
external controller u;|;, Vj > 0 are estimated using [4].

For our approach, we apply the MPC objective function to
the internally controlled subsystem and the MPSF objective
function to the externally controlled subsystem:

JSBSF(X\kaﬁMm Ql7ReaR1) =

- i . (12)
Impse(V3), RY) + Jvec (2!, V.1, Q1 RY).

By changing the weight matrices R, Qij, and Rij, the system
will prioritize different behaviours.

V. EXPERIMENTS ON DRONE SWARM

We ran experiments on a swarm of four Crazyflie 2.0 drones
to test our subsystem filtering approach. The experiments were
conducted in simulation using the massively parallelizable
multi-drone simulator Crazyflow [8]. Two of these drones
were considered the external subsystem and were controlled
by individual linear quadratic regulators (LQRs) representing
teleoperators. The other two drones represented the internal
subsystem. This experiment represents human teleoperators
flying drones within a larger swarm, demonstrating that our
approach can ensure safety and maintain performance for all
drones.

The desired trajectories for the drones are aggressive 3D
trajectories that overlap, leading to collisions if the trajectories
are followed precisely. The drones were constrained to be
within a box that tightly wraps the desired trajectory, leading
to constraint violations if the drones overshoot the trajectory.

A. Approaches

We compare our approach to naive and decentralized ap-
proaches to illustrate the importance of jointly filtering the
external subsystem and controlling the internal subsystem.



1) No Filtering: Firstly, we ran the externally-controlled
drones with no safety filtering, and the internally-controlled
drones with a separate centralized MPC controller. The LQRs
and the MPC only account for their respective subsystem,
and are unaware of the other subsystem. As LQRs do not
guarantee safety, the externally-controlled drones violate posi-
tion constraints and collide with one another. The internally-
controlled drones respect the constraints and do not collide
with one another. However, due to a lack of communication
between the two subsystems, the internally-controlled drones
collide with the externally-controlled drones.

2) Naive Filtering: We added an MPSF to the externally-
controlled drones, eliminating constraint violations and colli-
sions with one another. However, the two subsystems still do
not know of one another and collide.

3) Safe-External: We extend the MPSF on the external
subsystem to be aware of the internal subsystem’s current
state and predicted trajectory. The internal subsystem remains
unaware of the external subsystem. Thus, the external sub-
system can now try to avoid collisions with the internally-
controlled drones. However, since the MPSF cannot control
the internal subsystem directly, this approach leads to high-
magnitude corrections.

4) Safe-Internal: Similar to Safe-Exteration, we extend
Naive Filtering by making the internal MPC aware of the
current state and predicted trajectory of the external subsys-
tem. The external subsystem remains unaware of the internal
subsystem. This approach degrades the performance of the
internally-controlled drones as they must now dodge the
externally-controlled drones.

5) Subsystem Filtering: Our approach combines the inter-
nal subsystems MPC and the external subsystem MPSF into
one optimization problem that jointly considers and commands
all the drones at once.

B. Metrics

1) Performance: We measure the RMSE of both subsys-
tems separately to track how well each approach tracks the
desired trajectories of each subsystem.

2) Corrections: The safety filter attempts to minimize
corrections to the external controller’s desired actions. Thus,
we measure the mean correction applied to the external com-
mands [4]. Additionally, safety filters may cause chattering,
which we aim to minimize. Thus, we also measure the rate of
change of the inputs [4] for all approaches to determine the
additional chattering caused by the approaches.

3) Safety: Finally, our approach is mainly concerned with
safety. Thus, we measure the number of position constraint
violations and collisions, defined as when the drones are within
15cm of each other.

C. Results

Our experiments are summarized in Table 1. In all metrics
except safety, the approaches with no filtering (None) and no
communication or knowledge between the subsystems (Naive)
outperform the safer approaches. This is to be expected,
as enforcing safety necessarily requires deviations from the
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Fig. 2: The trajectories of a four-drone swarm. The yellow and green lines
represent the externally-controlled drones, while the red and blue lines repre-
sent the internally-controlled drones. The pink square represents the position
constraints. The Naive approach leads to a high number of collisions, while
our SBSF approach coordinates between the two subsystems and minimizes
collisions (see Table I).

desired trajectory and greater corrections to the external sub-
system. While both approaches cause many collisions, the
Naive approach minimizes constraint violations.

Safe-Ext and Safe-Int have different trade-offs. Safe-Ext
raises RMSE-Ext (the RMSE of the external drones) and
Mean Corrections, while Safe-Int worsens RMSE-Int (the
RMSE of the internal drones). In those three metrics, our
approach (SBSF) is always between the two other approaches,
although it is significantly closer to the better end of each
metric. In the Rate of Change (RoC) of the Inputs and the
Constraint Violations, our approach also sits between the other
approaches. Our approach results in the minimum number of
collisions.

While the Safe-Ext and Safe-Int approaches can theoretically
enforce safety, their inability to affect the other subsystem re-
duces their effectiveness and results in significantly worsened
performance in their own subsystem, as well as a reduced
ability to avoid collisions. Our proposed subsystem filtering
approach SBSF allows for simultaneously controlling both
subsystems, balancing the RMSE in both subsystems as well
as the corrections. The priority between the two subsystems
can be chosen by changing the ratio between the safety filter
cost Jypsr and the MPC cost Jyipc in the SBSF objective
function (Eq. 12). This flexibility also results in far more
manoeuvrability, reducing collisions and improving safety.

TABLE I: Results of experiments comparing various approaches in controlling
and filtering a swarm of four drones.

|| None | Naive | Safe-Ext | Safe-Int SBSF |

RMSE-Ext (m) 0.118 | 0.125 | 0.157 0.125 0.134

RMSE-Int (m) 0.043 | 0.043 | 0.043 0.069 0.050

Mean Corrections || - 0.325 | 0.585 0.325 0.392

RoC of the Inputs || 18.4 | 24.1 27.5 31.5 25.1

Constraint Viols 154 0 0 0 0

Collisions 284 176 2 0 0
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